

LOW POWER TCXO & VCTCXO OSCILLATOR SERIES "TCVCTO-2" 10.0-40.0 MHz

FEATURES

- 100% pin-to-pin drop-in replacement to quartz and MEMS based VCTCXO + WiFi, 3G, LTE, SDI, Ethernet, SONET, DSL
- Ultra Performance Oscillator for Low Cost
- TCXO function active when Pin 1 = not connected
- Wide tuning range up to ±50 ppm
- Excellent long time reliability—outperforms quartz-based XO
- Frequency stability as low as ± 1.5 ppm (± 0.5 ppm and ± 1 ppm optionally)
- Outstanding long term aging
- LVCMOS compatible output with option for EMI reduction
- Packages available 2.5x2.0; 3.2x2.5; 5.0x3.2; 7.0x5.0 mm
- Pb-free, RoHS and REACH compliant / MSL1@260°C

APPLICATIONS

- Telecom, networking, smart meter, wireless, test instrumentation

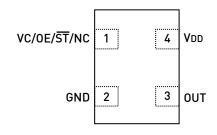
GENERAL DATA

PARAMETER AND CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Output Frequency Range	f	Refer to th	e frequency l	ist (<i>page 2)</i>	MHz	27 standard frequencies between 10MHz and 40MHz
Initial Tolerance	F_init	-1	-	1	PPM	At 25°C
Stability Over Temperature	F_stab	-1.5	_	+1.5	PPM	Over operating temperature range at rated nominal power
		-2	-	+2	PPM	supply voltage and load ±1.5PPM is available in -20 to 70 °C
		-2.5	-	+2.5	PPM	temp. range only. Contact PETERMANN-TECHNIK for ±0.5 PPM and ±1 PPM options.
		-5	-	+5	PPM	
Supply Voltage	F_VDD	-	50	-	PPB	±10% VDD (±5% for VDD = 1.8V)
Output Load	F_load	-	0.1	-	PPM	15 pF ±10% of load
First year Aging	F_aging	-1.5	-	+1.5	PPM	25°C
10-year Aging		-3.5	-	+3.5	PPM	25°C
Stability vs. Temperature Slope	F_slope	-	0.1	-	PPM/°C	
Operating Temperature Range	T_use	-20	-	+70	°C	Extended Commercial
		-40	_	+85	°C	Industrial
Storage Temperature Range	T_stor	-65	-	+150	°C	
Supply Voltage	VDD	1.71	1.8	1.89	V	Contact PETERMANN-TECHNIK for any other supply voltage
		2.25	2.5	2.75	V	options.
		2.52	2.8	3.08	V	
		2.70	3.0	3.3	V	
		2.97	3.3	3.63	V	
Pull Range	PR		±12.5		PPM	
Upper Control Voltage	VC_U	VDD-0.1	_	-	V	All VDDs. Voltage at which maximum deviation is guaranteed.
Control Voltage Range	VC_L	-	-	0.1	V	
Control Voltage Input Impedance	Z_vc	100	_	-	kΩ	
Frequency Change Polarity	-	1	Positive slope	e	-	
Control Voltage -3dB Bandwidth	V_BW	-	-	8	kHz	
Current Consumption	IDD	-	31	33	mA	No load condition, f = 20 MHz, VDD = 2.5V, 2.8V or 3.3V.
		-	29	31	mA	No load condition, f = 20 MHz, VDD = 1.8V.
OE Disable Current	I_OD	-	-	31	mA	VDD = 2.5V, 2.8V or 3.3V, $OE = GND$, output is pulled down
		-	-	30	mA	VDD = 1.8 V. OE = GND, output is pulled down
Standby Current	l_std	-	-	70	μΑ	VDD = 2.5V, 2.8V or 3.3V, $ST = GND$, output is pulled down.
		-	-	10	μΑ	VDD = 1.8V. ST = GND, output is pulled down.

Note:

1. All electrical specifications in the above table are specified with 15 pF output load at default drive strength and for all VDD(s) unless otherwise stated.

GENERAL DATA (continued)


PARAMETER AND CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Duty Cycle	DC	45	-	55	%	All VDDs
LVCMOS Rise/Fall Time	Tr, Tf	-	1.5	2	ns	LVCMOS option. Default rise/fall time, All VDDs, 10% - 90% VDD.
EMI reduction Rise/Fall Time		EMI reducti	on Rise/Fall	Time Table	ns	EMI reduction option. Frequency and supply voltage dependent.
Output Voltage High	VOH	90%	-	-	VDD	OH = -7 mA, $IOL = 7$ mA, $[VDD = 3.3V, 3.0V]$ $IOH = -4$ mA, $IOL = 4$ mA, $[VDD = 2.8V, 2.5V]$ $IOH = -2$ mA, $IOL = 2$ mA, $[VDD = 1.8V]$
Output Voltage Low	VOL	-	-	10%	VDD	
Input Voltage High	VIH	70%	-	-	VDD	Pin 1, 0E or ST
Input Voltage Low	VIL	-	-	30%	VDD	Pin 1, 0E or ST
Input Pull-up Impedance	Z_in	-	100	250	kΩ	
Startup Time	T_start	-	-	10	ms	Measured from the time VDD reaches its rated minimum value
OE Enable/Disable Time	T_oe	-	-	150	ns	f = 80 MHz. For other frequencies, T_oe = 100 ns + 3 cycles
Resume Time	T_resume	-	6	10	ms	Measured from the time ST pin crosses 50% threshold
RMS Period Jitter	T_jitt	-	1.7	2	ps	f = 10 MHz, VDD = 2.5V, 2.8V or 3.3V
		-	1.7	2	ps	f = 10 MHz, VDD = 1.8V
RMS Phase Jitter (random)	T_phj	-	0.5	1	ps	f = 10 MHz, Integration bandwidth = 12 kHz to 20 MHz, All

Note:

PIN DESCRIPTION

	PIN	SYMBOL		FUNCTIONALITY
			V control	Voltage control
	1 VC/OE/ST/NC		Output Enable	H or Open[2]: specified frequency output L: output is high impedance. Only output driver is disabled.
			Standby	H or Open[2]: specified frequency output L: output is low (weak pull down). Device goes to sleep mode. Supply current reduces to I_std.
			NC	No connect (input receiver off)
	2	GND	Power	Electrical and case ground
	3	CLK	Output	Oscillator output
	4	VDD	Input Power	Power supply voltage

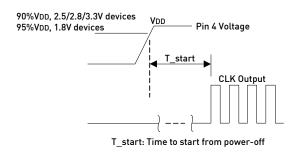
TOP VIEW

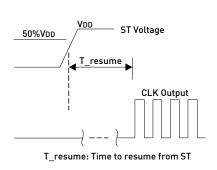
SUPPORTED FREQUENCIES

10 MHz	12 MHz	12.288 MHz	12.8 MHz	13 MHz	14 MHz	14.4 MHz	14.7456 MHz	16 MHz
16.357 MHz	16.3676 MHz	16.367667 MHz	16.368 MHz	16.369 MHz	16.8 MHz	19.2 MHz	19.44 MHz	19.68 MHz
20 MHz	20.8 MHz	24 MHz	25 MHz	26 MHz	27.456 MHz	33.6 MHz	38.4 MHz	40 MHz

Note:

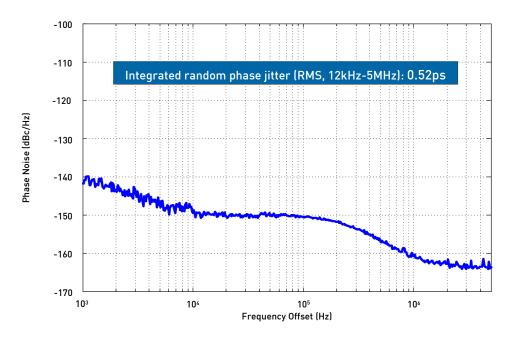
^{1.} All electrical specifications in the above table are specified with 15 pF output load and for all VDD(s) unless otherwise stated.


^{2.} A pull-up resistor of <10 kΩ between 0E/ST pin and VDD is recommended in high noise environment when the device operates in 0E/ST mode.



TIMING DIAGRAMS

ST/OE MODE

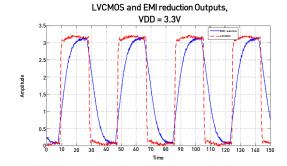


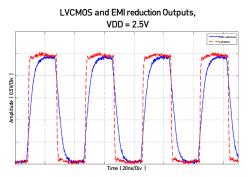
ST MODE ONLY

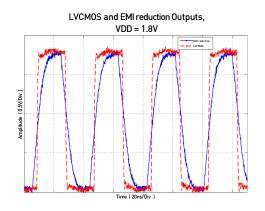
PHASE NOISE PLOT

PHASE NOISE, 10MHz CARRIER, 3.3V, LVCMOS OUTPUT, TCXO

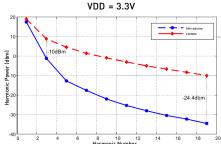
EMI REDUCTION OPTION

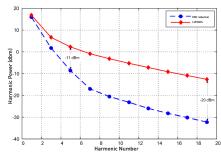

The adjustable output is available as a standard option for the TCVCTO-2 (TCXO & VCTCXO). The adjustable EMI reduction option is used typically for EMI reduction similar to that of a clipped sinewave output common to many quartz based TCXOs.

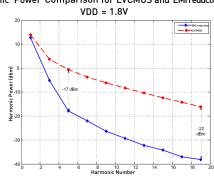

In the EMI reduction mode, the slower rise/fall edges of the output waveform reduce the higher clock harmonics in a digital clock signal, minimizing EMI radiation at these harmonics. The table below show the actual rise/fall time in relation to the desired output frequency and the supply voltage with a $10 \text{ k}\Omega$ / 10pF load. Rail-to-rail swing of the output is maintained for these supported frequencies.


PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Rise/Fall Time	Tr, Tf	4.0	6.5	9.5	ns	126MHz,1.8V,3.0 and $3.3V,MHz$ 10k and 10 pF, 20%-80% VDD
		2.5	4.0	6.0	ns	1-26MHz, 2.5V and 2.8V, MHz 10k and 10 pF, 20%-80% VDD
		1.5	3.5	5.0	ns	2640MHz,1.8V,3.0V and $3.3V,MHz10k$ and 10 pF, $20%80%VDD$
		1.5	2.5	4.5	ns	26-40 MHz, 2.5V and 2.8V, MHz 10k and 10 pF, 20%-80% VDD

EMI REDUCTION WAVEFORM EXAMPLES AND CORRESPONDING HARMONICS REDUCTION

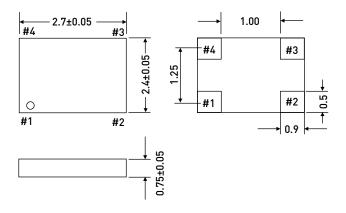

Figures below illustrate the harmonic power reduction as the rise/fall times are slowed from the standard squarewave output to that of the EMI reduction output. In general, the 1.8V device shows the lowest harmonics and provides best EMI performance comparing to devices with higher operating voltages.

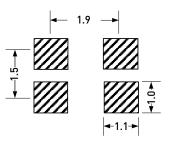



Odd Harmonic Power Comparison for LVCMOS and EMI reduction Outputs,

Odd Harmonic Power Comparison for LVCMOS and EMI reduction Outputs, VDD = 2.5V

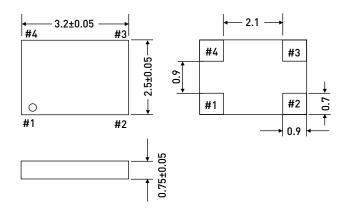
 ${\tt Odd\ Harmonic\ Power\ Comparison\ for\ LVCMOS\ and\ EMI\ reduction\ Outputs,}$



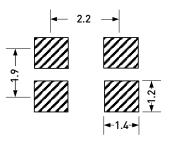

DIMENSIONS AND PATTERNS

PACKAGE SIZE - DIMENSIONS (UNIT:MM)

2.7X 2.4 X 0.75 MM (100% compatible with 2.5 x 2. 0 mm footprint)

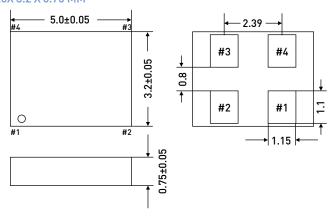


RECOMMENDED LAND PATTERN (UNIT:MM)

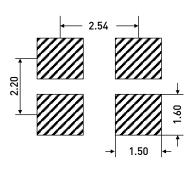


PACKAGE SIZE - DIMENSIONS (UNIT:MM)

3.2 X 2.5 X 0.75 MM



RECOMMENDED LAND PATTERN (UNIT:MM)

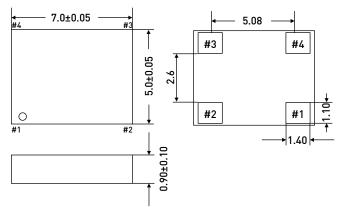


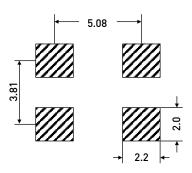
PACKAGE SIZE - DIMENSIONS (UNIT:MM)

5.0X 3.2 X 0.75 MM

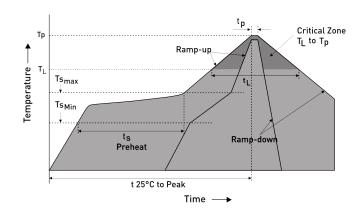
RECOMMENDED LAND PATTERN (UNIT:MM)

Note:

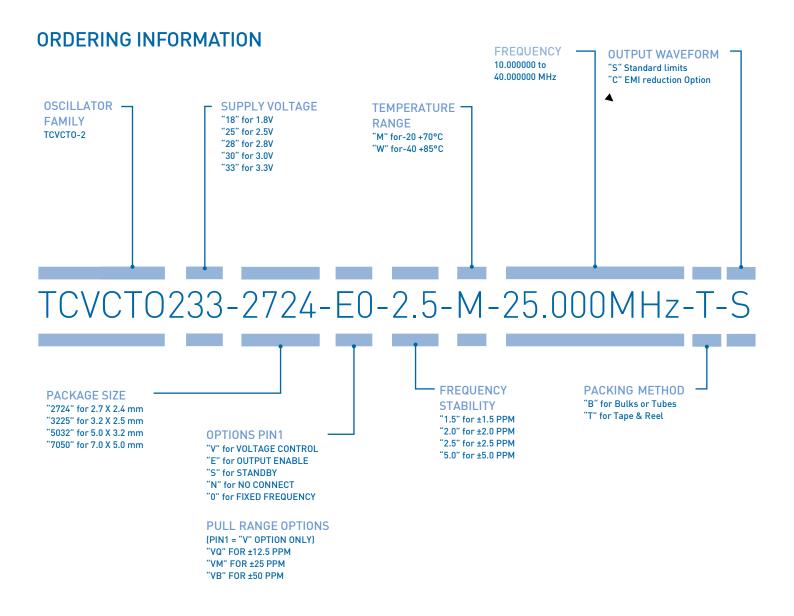

3. A capacitor value of 0.1 μF between VDD and GND is recommended.


DIMENSIONS AND PATTERNS

PACKAGE SIZE - DIMENSIONS (UNIT:MM)


7.0X 5.0 X 0.90 MM

RECOMMENDED LAND PATTERN (UNIT:MM)


REFLOW SOLDER PROFILE

PIPC/JEDEC Standard	IPC/JEDEC J-STD-020
Moisture Sensitivity Level	Level 1
TS MAX to TL (Ramp-up Rate)	3°C/second Maximum
Preheat	
- Temperature Minimum (TS MIN)	150°C
- Temperature Typical (TS TYP)	175°C
- Temperature Typical (TS MAX)	200°C
- Time (tS)	60 - 180 Seconds
Ramp-up Rate (TL to TP)	3°C/second Maximum
Time Maintained Above:	
- Temperature (TL)	217°C
- Time (TL)	60 - 150 Seconds
Peak Temperature (TP)	260°C Maximum
Target Peak Temperature (TP Target)	255°C
Time within 5°C of actual peak (tP)	20 -40 Seconds
Max. Number of Reflow Cycles	3
Ramp-down Rate	6°C/second Maximum
Time 25°C to Peak Temperature (t)	8 minutes Maximum

EXAMPLE: TCVCT0233-2724-E0-2.5-M-25.000MHz-T-S

PLEASE CLICK HERE TO CREATE YOUR OWN

ORDERING CODE

Frequency Stability (PPM) Temperature Range

FREQUENCY STABILITY (PPM)	TEMPERAT	URE RANGE
	M (-20 to +70°C)	W (-40 to +85°C)
±5	\checkmark	\checkmark
±2.5	✓	\checkmark
±2	✓	✓
±1.5	✓	Contact PETERMANN-TECHNIK
1	Contact PETERMANN-TECHNIK	Contact PETERMANN-TECHNIK
0.5	Contact PETERMANN-TECHNIK	Contact PETERMANN-TECHNIK

PREMIUM QUALITY BY PETERMANN-TECHNIK

OUR COMPANY IS CERTIFIED ACCORDING TO ISO 9001:2015 IN OCTOBER 2016 BY THE DMSZ CERTIFIKATION GMBH.

THIS IS FOR YOU TO ENSURE THAT THE PRINCIPLES OF QUALITY MANAGEMENT ARE FULLY IMPLEMENTED IN OUR QUALITY MANAGEMENT SYSTEM AND QUALITY CONTROL METHODS ALSO DOMINATE OUR QUALITY STANDARDS.

© PETERMANN-TECHNIK GmbH 2017. The information contained herein is subject to change at any time without notice. PETERMANN-TECHNIK owns all rights, title and interest to the intellectual property related to PETERMANN-TECHNIK's products, including any software, firmware, copyright, patent, or trademark. The sale of PETERMANN-TECHNIK products does not convey or imply any license under patent or other rights. PETERMANN-TECHNIK retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by PETERMANN-TECHNIK. Unless otherwise agreed to in writing by PETERMANN-TECHNIK, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.