

HIGH FREQUENCY ULTRA PERFORMANCE OSCILLATORSERIES "HFUPO"80.0-220.0MHz

FEATURES

- + Ultra Performance Oscillator for Low Cost
- + Low power consumption / Ultra low phase Jitter
- + Excellent long time reliability
- + Very tight frequency stability as low as ±10 ppm
- + Outstanding long term aging of ±5ppm after 10 years
- + LVCMOS/LVTTL compatible output
- + Standard housings: 2.5x2.0; 3.2x2.5; 5.0x3.2; 7.0x5.0mm
- + Express samples within 1 day ex works PETERMANN-TECHNIK
- + Pb-free, RoHS and REACH compliant / MSL1@260°C

APPLICATIONS

- + SATA, SAS, Ethernet, 10-Gigabit Ethernet, SONET, PCI Express, video, Wireles
- Computing, storage, networking, telecom, industrial control,
- + etc.

GEN	NER A	AL DA	

PARAMETER AND CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
FREQUENCY RANGE						
Output Frequency Range	f	80.000001	-	220	MHz	
FREQUENCY STABILITY AND AGING						
Frequency Stability	F_stab	-10	-	+10	PPM	Inclusive of initial tolerance at 25 °C, and variations over
		-20	-	+20	PPM	operating temperature, rated power supply voltage and load
		-25	-	+25	PPM	
		-50	-	+50	PPM	
First year Aging	F_aging	-1.5	-	+1.5	PPM	25°C
10-year Aging		-5	-	+5	PPM	25°C
OPERATING TEMPERATURE RANGE						
Operating Temperature Range	T_use	-20	-	+70	°C	Extended Commercial
		-40	-	+85	°C	Industrial
Storage Temperature Range	T_stor	-55	-	+125	°C	Storage
SUPPLY VOLTAGE AND CURRENT CONSUMPT	ION					
Supply Voltage	VDD	1.71	1.8	1.89	V	Supply voltages between 2.5V and 3.3V can be supported.
		2.25	2.5	2.75	V	Contact PETERMANN-TECHNIK for guaranteed performance
		2.52	2.8	3.08	V	specs for supply voltages not specified in this table
		2.97	3.3	3.63	V	
Current Consumption	IDD	-	34	36	mA	No load condition, f = 100 MHz, VDD = 2.5V, 2.8V or 3.3V
		-	30	33	mA	No load condition, f = 100 MHz, VDD = 1.8V
OE Disable Current	I_OD	-	-	31	mA	VDD = 2.5V, 2.8V or 3.3V, OE = GND, output is pulled down
				30	mA	VDD = 1.8 V. OE = GND, output is pulled down
Standby Current	l_std	-	-	70	μA	VDD = 2.5V, 2.8V or 3.3V, ST = GND, output is pulled down
		-	-	10	μA	VDD = 1.8 V. ST = GND, output is pulled down

1. All electrical specifications in the above table are specified with 15 pF±10% output load at default drive strength and for all VDD(s) unless otherwise stated.

GENERAL DATA^[1] (continued)

PARAMETER AND CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
LVCMOS OUTPUT CHARACTERISTICS						
Duty Cycle	DC	45	-	55	%	f <= 165 MHz, all VDDs.
		40	-	60	%	f > 165 MHz, all VDDs.
Rise/Fall Time	Tr, Tf	-	1.2	2	ns	15 pF load, 10% - 90% VDD
Output Voltage High	VOH	90%	-	-	VDD	IOH = -6 mA, IOL = 6 mA, (VDD = 3.3V, 2.8V, 2.5V), IOL = 3 mA, (VDD = 1.8V)
Output Voltage Low	VOL	-	-	10%	VDD	
INPUT CHARACTERISTICS						
Input Voltage High	VIH	70%	-	-	VDD	Pin 1, OE or ST
Input Voltage Low	VIL	-	-	30%	VDD	Pin 1, OE or ST
Input Pull-up Impedance	Z_in	-	100	250	kΩ	Pin 1, OE logic high or logic low, or ST logic high
		2	-	-	MΩ	Pin 1, ST logic low
STARTUP AND RESUME TIMING						
Startup Time	T_start	-	7	10	ms	Measured from the time VDD reaches its rated minimum value
OE Enable/Disable Time	T_oe	-	-	115	ns	f = 80 MHz, For other frequencies, T_oe = 100 ns + 3 cycles
Resume Time	T_resume	-	-	10	ms	In standby mode, measured from the time ST pin crosses 50% threshold. Refer to Figure 4.
JITTER						
RMS Period Jitter	T_jitt	-	1.5	2	ps	f = 156.25 MHz, VDD = 2.5V, 2.8V or 3.3V
		-	2	3	ps	f = 156.25 MHz, VDD = 1.8V
RMS Phase Jitter (random)	T_phj	-	0.5	1	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz
EXCELLENT RELIABILITY DATA						
MTBF					500 m	illion hours
Shock Resistance:					1	0.000 g
Vibration Resistance:						70 g

Note: 1. All electrical specifications in the above table are specified with 15 pF ±10% output load and for all VDD(s) unless otherwise stated.

PIN DESCRIPTION

TOP VIEW

Output Enable H or Open ^[2] : specified frequency output L: output is high impedance. Only output driver is d	isabled.
1 OE/ ST H or Open ^[2] : specified frequency output Standby L: output is low (weak pull down). Device goes to sle mode. Supply current reduces to I_std.	ер
2 GND Power Electrical ground ^[3]	
3 OUT Output Oscillator output	
4 VDD Power Power supply voltage ^[3]	

Notes:

- 2. A pull-up resistor of <10 k Ω between OE/ ST pin and VDD is recommended in high noise environment.
- 3. A capacitor value of 0.1 µF between VDD and GND is recommended.

TEST CIRCUIT AND WAVEFORM [4, 5]

FIGURE 1. TEST CIRCUIT

FIGURE 2. WAVEFORM

TIMING DIAGRAMS [6, 7]

FIGURE 3. STARTUP TIMING (OE/ST MODE)

FIGURE 5. OE ENABLE TIMING (OE MODE ONLY)

FIGURE 4. STANDBY RESUME TIMING (ST MODE ONLY)

FIGURE 6. OE DISABLE TIMING (OE MODE ONLY)

T_OE: Time to put the output drive in High Z mode

Notes:

- 4. Duty Cycle is computed as Duty Cycle = TH/Period.
- 5. HFUPO supports the configurable duty cycle feature. For custom duty cycle at any given frequency, contact PETERMANN-TECHNIK.
- 6. HFUPO supports no runt pulses and no glitches during startup or resume.
- 7. HFUPO supports gated output which is accurate within rated frequency stability from the first cycle.

DIMENSIONS AND PATTERNS

PACKAGE SIZE – DIMENSIONS (UNIT:MM)

2.7X 2.4 X 0.75 MM (100% COMPATIBLE WITH 2.5X2.0MM FOOTPRINT)

PACKAGE SIZE – DIMENSIONS (UNIT:MM)

3.2 X 2.5 X 0.75 MM

RECOMMENDED LAND PATTERN (UNIT:MM) [9]

RECOMMENDED LAND PATTERN (UNIT:MM) [9]

PACKAGE SIZE – DIMENSIONS (UNIT:MM) 5.0 X 3.2 X 0.75 MM

8. A capacitor value of 0.1 µF between VDD and GND is recommended.

RECOMMENDED LAND PATTERN (UNIT:MM) [9]

DIMENSIONS AND PATTERNS

PACKAGE SIZE – DIMENSIONS (UNIT:MM)

7.0 X 5.0 X 0.90 MM

RECOMMENDED LAND PATTERN (UNIT:MM)

[•] IPC/JEDEC Standard	IPC/JEDEC J-STD-020
Moisture Sensitivity Level	Level 1
TS MAX to TL (Ramp-up Rate)	3°C/second Maximum
Preheat	
- Temperature Minimum (TS MIN)	150°C
- Temperature Typical (TS TYP)	175°C
- Temperature Typical (TS MAX)	200°C
- Time (tS)	60 - 180 Seconds
Ramp-up Rate (TL to TP)	3°C/second Maximum
Time Maintained Above:	
- Temperature (TL)	217°C
- Time (TL)	60 - 150 Seconds
Peak Temperature (TP)	260°C Maximum
Target Peak Temperature (TP Target)	255°C
Time within 5°C of actual peak (tP)	20 -40 Seconds
Max. Number of Reflow Cycles	3
Ramp-down Rate	6°C/second Maximum
Time 25°C to Peak Temperature (t)	8 minutes Maximum

ORDERING INFORMATION

Note:

9. Contact PETERMANN-TECHNIK for custom drive strength to drive higher or multiple load, or for EMI reduction.

EXAMPLE: HFUP033-2724-E-10-M-90.000MHz-T

PLEASE CLICK HERE TO CREATE YOUR OWN ORDERING CODE

EXPRESS SAMPLES ARE DELIVERABLE ON THE SAME DAY IF ORDERED UNTIL 02:00 PM!

CRYSTALS · OSCILLATORS · CERAMIC RESONATORS · CERAMIC FILTERS · SAW COMPONENTS

PREMIUM QUALITY BY PETERMANN-TECHNIK

OUR COMPANY IS CERTIFIED ACCORDING TO ISO 9001:2015 IN OC-TOBER 2016 BY THE DMSZ CERTIFIKATION GMBH.

THIS IS FOR YOU TO ENSURE THAT THE PRINCIPLES OF QUALITY MANAGEMENT ARE FULLY IMPLEMENTED IN OUR QUALITY MA-NAGEMENT SYSTEM AND QUALITY CONTROL METHODS ALSO DO-MINATE OUR QUALITY STANDARDS.

© PETERMANN-TECHNIK GmbH 2017. The information contained herein is subject to change at any time without notice. PETERMANN-TECHNIK owns all rights, title and interest to the intellectual property related to PETERMANN-TECHNIK's products, including any software, firmware, copyright, patent, or trademark. The sale of PETERMANN-TECHNIK products does not convey or imply any license under patent or other rights. PETERMANN-TECHNIK retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by PETERMANN-TECHNIK. Unless otherwise agreed to in writing by PETERMANN-TECHNIK, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.